#### www.merobel.com

# **WAT-P Series**

MEROBEL

**Specialist in Tension Control** 

Pillow block self contained Load Cell

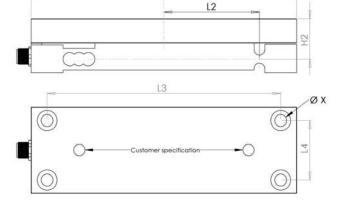
Load cell Type WAT-P Series are offering a brand new design to meet today's demand of wide web, rotating live shaft applications in paper - and converting machines.

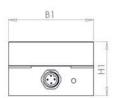
The WAT-P is a block type load cell to be used with a pillow block bearing top mounted for very high load applications.

Featuring a unique beam design, it is a very long life product.

#### Benefits

- Compact aluminum housing (stainless steel optional)
- Customs beam design ensures very precise, repetitive performance and long life
- All metric dimensions
- Wash down duty, corrosive and chemical resisting
- Industry standard M12 connector
- Easy to install
- Price / performance competitive
- Cable length 5 m included


### Specifications

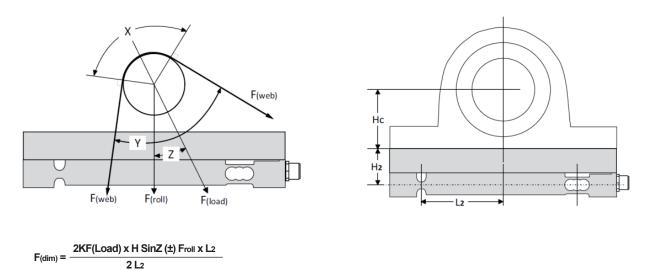

| Max operating force relative to Fn | 150%         |
|------------------------------------|--------------|
| Force limit relative to Fn         | 500%         |
| Strain gauge resistance            | 350 ohm      |
| Strain gauge configuration         | full bridge  |
| Supply                             | 5 to 10 VDC  |
| Nominal output                     | 1mV/V        |
| Combined error relative to Fn      | < 0.5%       |
| Temperature coefficient            | <0.4% / 10K  |
| Operating temperature range        | -20 to +85 C |
| Deflection at Fn                   | < 0.1 mm     |

| Reference | Load<br>rating<br><b>Fn</b> (N) | Part N#     |
|-----------|---------------------------------|-------------|
| WAT-P 25  | 250                             | ME132636-10 |
| WAT-P 50  | 500                             | ME132637-10 |
| WAT-P 125 | 1250                            | ME132638-10 |
| WAT-P 500 | 5000                            | ME132639-10 |

## Dimensions

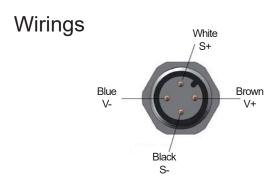
| L1  | L2 | H1 | H2                 | B1 |
|-----|----|----|--------------------|----|
| 200 | 72 | 40 | 30                 | 64 |
| L3  | L4 | Х  | Connector          |    |
| 176 | 44 | 9  | M12 x 1 integrated |    |
|     |    |    |                    |    |






# MEROBEL Specialist in Tension Control

## Calculating the force sizing


The correct Load Cell load rating for an application is determined by maximum web tension, web wrap angle around the roller, and mass of the roll.

The force F(roll) from the mass m(roll) of the roll, is determined as F(roll) = m(roll) x 9.82 (N) The force F(Load), from the web tension F(web), is determined as F(Load) = 2 x F(web) x Sin(X/2) Force action arm H = H<sub>c</sub> + H<sub>2</sub>



The minimum load cell size has to be  $> \frac{1}{2} \times F(roll)$ For mounting different from Horizontal or vertical, please consult your local distributer

$$\begin{split} m(roll) &= mass of the roller in kg \\ F(web) &= maximum web tension \\ Z &= angle between F(Load) and vertical \\ X &= web wrap angle = 180° - Y° \\ H &= H_2 + H_c (center height of bearing) \\ K &= Transient safety factor (usually 1.5) \\ L_2 &= Center-hinge distance \end{split}$$

